

Session: 2018-2019 Department: CSE Subject code: CSE-301-F

019Course- CSESESemester: 5thSE-301-FFaculty Name : Ms. SonalMERI COLLEGE OF ENGINEERING & TECHNOLOGY

LESSON PLAN FILE

| ACADEMIC SESSION | 2018-19                   |                       |
|------------------|---------------------------|-----------------------|
| BRANCH NAME      | CSE (5 <sup>TH</sup> SEM) |                       |
| SUBJECT          | OPERATING SY              | YSTEM                 |
| PAPER CODE       | CSE-301-F                 | LECTURE PER WEEK = 03 |
| FACULTY NAME     | MS. SONAL                 |                       |
| SIGNATURE :      |                           |                       |

#### HOD REMARK

LESSON PLAN FILE HAS BEEN PREPARED AS PER UNIVERSITY SYLLABUS.

#### REGISTRAR

DIRECTOR



Session: 2018-2019Course- CSEDepartment: CSESemester: 5<sup>th</sup>Subject code: CSE-301-FFaculty Name : Ms. Sonal(DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING)

#### LESSON PLAN FILE

Name of the Faculty :

Semester :

Subject :

#### **INDEX**

| S.No. | NOMENCLATURE          | PAGE NO. |
|-------|-----------------------|----------|
| 1.    | Syllabus as per MDU   | 1        |
| 2.    | Focal Points          | 2        |
| 3.    | Course Objective      | 3        |
| 4.    | Lesson Plan           | 4-5      |
| 5.    | Important Topics      | 6        |
| 6.    | Assignments           | 7-9      |
| 7.    | Question Papers       | 10       |
| 8.    | Attandance Sheet      | 11       |
| 9.    | Monthly Report        | 12       |
| 10.   | Student Feedback Form | 13       |
| 11.   | Sessional Report      | 14       |
| 12.   | Time table            | 15       |

# MER College

## MERI College of Engineering & Technology (MERI-CET)

Session: 2018-2019 Department: CSE Subject code: CSE-301-F

Course- CSE Semester: 5<sup>th</sup> Faculty Name : Ms. Sonal

**Principles of Operating Systems** 

CSE-301-F

L T P

3 1 -

Duration of Exam : 3 Hrs.

Class Work : 50 Marks

Exam: 100 Marks

Total: 150 Marks

NOTE: For setting up the question paper, question no 1 will be set up from all the four sections which will be compulsory and of short answer type. Two questions will be set from each of the four sections. The students have to attempt first common question, which is compulsory, and one question from each of the four sections. Thus students will have to attempt 5 questions out of 9 questions.

#### Section-A

Introduction: Introduction to Operating System Concepts (including Multitasking, multiprogramming, multi user, Multithreading etc)., Types of Operating Systems: Batch operating system, Time-sharing systems, Distributed OS, Network OS, Real Time OS; Various Operating system services, architecture, System programs and calls. Process Management: Process concept, process scheduling, operation on processes; CPU scheduling, scheduling criteria, scheduling algorithms -First Come First Serve (FCFS), Shortest-Job-First (SJF), Priority Scheduling, Round Robin(RR), Multilevel Queue Scheduling.

#### Section-B

Memory Management: Logical & Physical Address Space, swapping, contiguous memory allocation, non-contiguous memory allocation paging and segmentation techniques, segmentation with paging; virtual memory management - Demand Paging & Page-Replacement Algorithms; Demand Segmentation.

### Section-C

File System: Different types of files and their access methods, directory structures, various allocation methods, disk scheduling and management and its associated algorithms, Introduction to distributed file system. Process-Synchronization & Deadlocks: Critical Section Problems, semaphores; methods for handling deadlocks-deadlock prevention, avoidance & detection; deadlock recovery.

#### Section D

I/O Systems: I/O Hardware, Application I/O Interface, Kernel, Transforming I/O requests, Performance Issues and Thresds Unix System And Windows NT Overview Unix system call



Session: 2018-2019 Department: CSE

Subject code: CSE-301-F

Course- CSE Semester: 5<sup>th</sup> Faculty Name : Ms. Sonal

for processes and file system management, Shell interpreter, Windows NT architecture verview, Windows NT file system.

#### **Text Books:**

Operating System Concepts by Silberchatz et al, 5 edition, 1998, Addison-Wesley.

Modern Operating Systems by A. Tanenbaum, 1992, Prentice-Hall.

Operating Systems Internals and Design Principles by William Stallings,4 edition, 2001, Prentice-Hall

#### **Reference Books:**

Operating System By Peterson, 1985, AW.

Operating System By Milankovic, 1990, TMH.

Operating System Incorporating With Unix & Windows By Colin Ritche, 1974, TMH.

Operating Systems by Mandrik & Donovan, TMH

Operating Systems By Deitel, 1990, AWL.

Operating Systems - Advanced Concepts By Mukesh Singhal, N.G. Shivaratri, 2003, T.M.H



Session: 2018-2019 Department: CSE Subject code: CSE-301-F Course- CSE Semester: 5<sup>th</sup> Faculty Name : Ms. Sonal

### **Focal Point for the Semester**

- 1. Effort will be made to make the student conversant with the syllabus of the Subject & the importance of the subject on the first day. Books on the subject available in the library & market will be listed.
- 2. Effort will be made so that Student should remain present in the class mentally not physically. Questions will be asked on the topic taught in the class & presence( attendance) will be given to those students who will reply satisfactorily.
- 3. Regular test will be conducted.
- 4. Assignment will be given as per schedule.
- 5. Practical aspects of the student will be taught.



Session: 2018-2019 Department: CSE Subject code: CSE-301-F

Course- CSE Semester: 5<sup>th</sup> Faculty Name : Ms. Sonal

#### **COURSE OBJECTIVE**

The Course emphasizes on advancement in the different types of steel structure. The complete details about steel section together with respective types of their use will be explained rigorously. After completion of course student will able to understand.

#### METHODOLOGY

The pedagogy will be lectures, presentations, Tutorials, assignments of class work and Practical work in the field.

#### ACHIEVEMENT

After the completion of course, all student will have detailed knowledge of steel structure, design of different steel members and plate girders.

#### **EVALUATION**

Besides the semester end – examination, the students will be continuously assessed

during the course on the following basis

- A. Mid Term Examinations 20 Marks
- B. Attendance 10 Marks
- C. Assignment & amp; behavior 20 Marks
- D. End Semester Examination 100 Marks

Total 150 Marks



Session: 2018-2019 Department: CSE Subject code: CSE-301-F

Course- CSE Semester: 5<sup>th</sup> Faculty Name : Ms. Sonal

| Name of the Faculty  | : | Ms. Sonal (Theory & Practical)           |
|----------------------|---|------------------------------------------|
| Discipline           | : | CSE                                      |
| Semester             | : | 5 <sup>th</sup>                          |
| Subject              | : | Operating System (CSE-301-F)             |
| Lesson Plan Duration | : | 15 Weeks (from Aug., 2018 to Nov., 2018) |

\*\* Work Load (Lecture/Practical) per week (in hours): Lectures-03, Practicals-06

| Week            | Theory           |                                   | Practical       |                          |  |
|-----------------|------------------|-----------------------------------|-----------------|--------------------------|--|
|                 | Lecture Topic    |                                   | Practical       | Торіс                    |  |
|                 | Day              | (including assignment/test)       | day             |                          |  |
| $1^{st}$        | 1 <sup>st</sup>  |                                   | 1 <sup>st</sup> |                          |  |
|                 | $2^{nd}$         | Introduction: Introduction to     |                 |                          |  |
|                 | 3 <sup>rd</sup>  | Operating System Concepts         |                 |                          |  |
|                 | _                | (including Multitasking,          |                 |                          |  |
|                 |                  | multiprogramming, multi user,     |                 |                          |  |
|                 |                  | Multithreading                    |                 |                          |  |
|                 |                  | etc)                              |                 |                          |  |
|                 | $4^{\text{th}}$  | Types of Operating Systems: Batch |                 | Study of WINDOWS         |  |
|                 | 41-              | operating system,                 |                 | 2000 Operating System.   |  |
| $2^{na}$        | 5 <sup>th</sup>  | Time-sharing systems, Distributed | $2^{na}$        |                          |  |
|                 | $6^{\text{th}}$  | OS, Network OS, Real Time OS;     |                 |                          |  |
|                 | $7^{\rm th}$     | Various                           |                 | Administration of        |  |
|                 | $8^{\text{th}}$  | Operating system services,        |                 | WINDOWS 2000             |  |
|                 |                  | architecture, System programs and |                 | (including DNS,LDAP,     |  |
|                 |                  | calls.                            | 1               | Directory Services)      |  |
| $3^{rd}$        | 9 <sup>th</sup>  |                                   | $3^{rd}$        |                          |  |
|                 | 11 <sup>th</sup> |                                   |                 | Study of LINUX           |  |
|                 |                  |                                   |                 | Operating System (Linux  |  |
|                 |                  |                                   |                 | kernel, shell, basic     |  |
|                 |                  |                                   |                 | commands pipe & filter   |  |
|                 |                  | Process Management: Process       |                 |                          |  |
| ⊿th             | 1 oth            | concept, process scheduling,      | ⊿th             |                          |  |
| 4               | 12 <sup>th</sup> | operation on processes;           | 4               |                          |  |
|                 | 13               | CPU scheduling, scheduling        |                 |                          |  |
|                 |                  | criteria,                         |                 |                          |  |
|                 | 14 <sup>th</sup> | scheduling algorithms -First Come | 1               | Administration of        |  |
|                 | 15 <sup>th</sup> | First Serve (FCFS), Shortest-Job- |                 | LINUX Operating          |  |
|                 | 15               | First (SJF),                      |                 | System                   |  |
| 5 <sup>th</sup> | 16 <sup>th</sup> | Priority Scheduling, Round        | 5 <sup>th</sup> | Writing of Shell Scripts |  |

# MER College

## MERI College of Engineering & Technology (MERI-CET)

| Session: 2<br>Departme  | 018-2019<br>nt: CSF    |                                                      | Course-<br>Semeste | CSE<br>r: 5 <sup>th</sup> |
|-------------------------|------------------------|------------------------------------------------------|--------------------|---------------------------|
| Subject code: CSE-301-F |                        | Eaculty Name : Ms. Sonal                             |                    |                           |
| Jubjeered               | 17 <sup>th</sup>       | Robin(RR), Multilevel Queue                          | racutyr            | (Shell programming).      |
|                         | $18^{\text{th}}$       | Memory Management: Logical & Physical Address Space, |                    |                           |
|                         | $19^{\text{th}}$       | swapping, contiguous memory                          |                    |                           |
| $6^{th}$                | $20^{\text{th}}$       | allocation, non-contiguous memory allocation         | $6^{th}$           |                           |
|                         | $21^{st}$              | paging and segmentation                              |                    |                           |
|                         | $22^{nd}$              | techniques, segmentation with                        |                    |                           |
|                         | 23 <sup>rd</sup>       | paging; virtual memory                               |                    | AWK programming.          |
| 7 <sup>th</sup>         | 24 <sup>th</sup>       | Demand Paging & Page                                 |                    | commands).                |
| /                       | 24<br>25 <sup>th</sup> | Replacement Algorithms;                              |                    |                           |
|                         | $26^{\text{th}}$       | Demand Segmentation                                  |                    |                           |
|                         | $27^{\text{th}}$       | File System: Different types of                      |                    |                           |
| $8^{\text{th}}$         | $28^{\text{th}}$       | files and their access methods                       |                    |                           |
| -                       | 29 <sup>th</sup>       | directory structures,                                |                    |                           |
|                         | 30 <sup>th</sup>       | various allocation methods, disk                     |                    |                           |
|                         | $31^{st}$              | scheduling and management                            |                    |                           |
| 9 <sup>th</sup>         | $32^{nd}$              |                                                      |                    |                           |
|                         | 33 <sup>rd</sup>       | its associated algorithms                            |                    |                           |
|                         | 34 <sup>th</sup>       | Introduction to distributed file                     |                    |                           |
|                         | $35^{\text{th}}$       | system                                               |                    |                           |
| 10 <sup>th</sup>        | 36 <sup>th</sup>       | Process-Synchronization & Deadlocks:                 |                    |                           |
|                         | $37^{\text{th}}$       | Critical Section Problems                            |                    |                           |
|                         | $38^{\text{th}}$       | semaphores;                                          |                    |                           |
|                         | 39 <sup>th</sup>       | methods for handling deadlocks-                      |                    |                           |
|                         | $40^{\text{th}}$       | deadlock prevention                                  |                    |                           |
| $11^{\text{th}}$        | $41^{\text{th}}$       | avoidance & detection; deadlock                      |                    |                           |
|                         | $42^{nd}$              | recovery.                                            |                    |                           |
|                         | 43 <sup>rd</sup>       |                                                      |                    |                           |
|                         | $44^{\text{th}}$       | I/O Systems: I/O Hardware                            |                    |                           |
| 12 <sup>th</sup>        | $45^{\text{th}}$       | Application I/O Interface, Kernel                    |                    |                           |
|                         | $46^{\text{th}}$       |                                                      |                    |                           |
|                         | $47^{\text{th}}$       | Transforming I/O requests                            |                    |                           |
|                         | $48^{\text{th}}$       | Performance Issues and Thresds                       |                    |                           |
| 13 <sup>th</sup>        | 49 <sup>th</sup>       | Unix System And Windows NT<br>Overview               |                    |                           |
|                         | $50^{\text{th}}$       | Unix system call for processes and                   |                    |                           |
|                         | 51 <sup>st</sup>       | file system management, Shell interpreter            |                    |                           |



Session: 2018-2019

Department: CSE

Subject code: CSE-301-F

Course- CSE Semester: 5<sup>th</sup> Faculty Name : Ms. Sonal

|  |                  |                  | * *                              |     |
|--|------------------|------------------|----------------------------------|-----|
|  |                  | $52^{nd}$        | Windows NT architecture          |     |
|  |                  |                  | overview, Windows NT file system |     |
|  | $14^{\text{th}}$ | $52^{nd}$        | Revision of syllabus             |     |
|  |                  | $53^{\rm rd}$    | Revision of syllabus             |     |
|  |                  | $54^{\text{th}}$ | Revision of syllabus             |     |
|  |                  | $55^{\text{th}}$ | Revision of syllabus             |     |
|  | 15 <sup>th</sup> | 56 <sup>th</sup> | Pre-University Exams             |     |
|  |                  |                  |                                  | 1 1 |